Контакты

Что можно смотреть под микроскопом ребенку. Увлекательные занятия с микроскопом. Что можно посмотреть под микроскопом

Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.

Что купить

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего - микроскопа. Одна из основных его характеристик - набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10–20 до 900–1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Следующий немаловажный момент - тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» - насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве - конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых - методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т. п.

Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения - аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция - это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Как смотреть

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани - несколько слоёв клеток создают нечёткое сумбурное изображение.

Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т. п.

Что смотреть

Микроскоп приобретён, инструменты закуплены - пора начинать. И начать следует с самого доступного - например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10–15 минут, после чего промыть под струёй воды.

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5–10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Не менее интересный объект для наблюдения - кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени - это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей - мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

Сам себе исследователь

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов - азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Продолжая тему исследования крови, следует упомянуть камеру Горяева - устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

«Наука и жизнь» о микросъёмке:
Микроскоп «Аналит» - 1987, №1.
Ошанин С. Л. С микроскопом у пруда. - 1988, №8.
Ошанин С. Л. Невидимая миру жизнь. - 1989, №6.
Милославский В. Ю. Домашняя микрофотография . - 1998, №1.
Мологина Н.

Микроорганизмы под названием бактерии окружают нас повсеместно. Источники для ознакомления с этими простыми, но интересными организмами можно найти буквально везде. Даже на руках, во рту, в моче, слюне человека живут миллионы интересных образцов. Разместив бактерии под микроскопом, можно увидеть их строение, особенности, понять, по каким признакам они классифицируются.

Можно посмотреть видео, демонстрирующие увеличение данных организмов под микроскопом. Это современные устройства, позволяющие рассмотреть невидимые человеческому глазу частицы. Они дают возможность достаточно точно узнать, как устроен мир одноклеточных, а также что такое бактерия, максимально подробно.

Разновидности микроскопов

Познакомиться с импровизированным видео под увеличительными линзами, где бактерии двигаются, можно в лабораторных и домашних условиях. Все зависит от наличия специального оборудования. Микроскопы, позволяющие производить наблюдение за организмами, имеют свою классификацию, построенную на основе конструкции оборудования, предоставляемых им возможностей. Выделяют следующие доступные виды:

  • обычный (биологические лаборатории, классы образовательных учреждений);
  • фазово-контрастный (исследует бактерии в моче);
  • темнопольный;
  • электронный.

На фото продемонстрированы данные категории для исследования бактерий, которые можно приобрести. Ознакомившись с видео, можно без труда научиться пользоваться каждой моделью, не допуская ошибок.

Выбор подходящей модели

Многих начинающих исследователей интересует, какой прибор выбрать, чтобы рассмотреть кисломолочные, а также другие распространенные категории бактерий.

Бюджетный сегмент микроскопов, демонстрирующих 640-кратное увеличение, не даст того эффекта, который можно оценить на видео, сделанном более мощным микроскопом. Бактерии в моче, к примеру, можно увидеть только под линзами оборудования, увеличивающим в 1000 крат и больше.

Под линзами обычного микроскопа будут показаны не совсем четкие палочки, нити, шарики с отсутствием четких контуров, сероватого оттенка.

Фазово-контрастный тип прибора работает на основе определения различной плотности частиц. Данный микроскоп, позволяющий осуществлять наблюдение и увеличение бактерий, окрашивает элементы в светло-серый или темно-серый оттенок. На таком видео можно рассмотреть многократное увеличение бактерий, находящихся в моче.

Темнопольный микроскоп позволяет разглядеть кисломолочные бактерии (увидеть, как они выглядят, можно также на фото). Его преимущество состоит в рассеивании света, идущего не через линзу напрямую, а сбоку. Прибор также позволяет понять, какой актуальный характер движения бактерий.

Электронная микроскопия: эффективный метод

Данный вид микроскопов следует выделить отдельно, так как на просторах разреженного пространства гибнут живые микроорганизмы, поэтому увидеть их непросто. Его изобретение стало настоящим прорывом, позволившим внести коррективы в изучение живых микроорганизмов. Много десятилетий назад оптические микроскопы не давали возможность узнать, как устроена бактерия, и рассмотреть наличие ядра или протоплазмы.

При помощи электронного устройства ученым удалось проследить процесс деления клетки. На фото можно увидеть бактерию стафилококка, часто присутствующую в моче человека и вызывающую серьезные заболевания, в состоянии деления. Исследования дали возможность снимать видео для изучения процессов на базе образовательных учреждений.

Что можно рассмотреть?

Каждый теперь может увидеть фото и видео всех известных науке бактерий в свободном доступе. Кисломолочные - это кокки и палочки, бактерии в моче - правильной формы шары (стафилококки), прямые палочки, нити (протеусы). Особенно хорошо они видны под электронным прибором на фото.

Исследуемый материал нужно фиксировать специальным методом, чтобы избежать быстрого распада и снизить уровень токсичности (второе актуально для исследования не всегда безопасных микроорганизмов в моче).

Увидеть бактерии в электронный микроскоп можно после предварительного нагрева стекла, на который нанесен образец для рассмотрения. Не обязательно покупать горелку – бытовые источники огня и стандартный пинцет позволят это сделать. В этих же целях можно использовать метиловый спирт или ацетон. Химическая фиксация требует осторожности (лучше рассмотреть для начала видео). Далее производится окраска образца с последующим увеличением его под микроскопом (наиболее распространенная краска - метиленовая синяя).

Учитывая, какой вид бактериальных организмов был окрашен, можно увидеть палочки или шарик. Они могут присутствовать в открытых ранах или моче человека.

Подвижные и неподвижные организмы

Под электронным или обычным микроскопом с многократным увеличением будет видно движение клеток. Независимо от того, какой тип бактерий исследуется – шары-стафилоккоки (находящиеся в моче) или кисломолочные, с жгутиками или без – они не останутся неподвижными. Возникает закономерный вопрос: почему двигаются те образцы, у которых жгутиков от природы нет?

Причина - не самостоятельное движение, как у имеющих дополнительные элементы, позволяющие шевелиться, а броуновское движение (беспорядочное, теплового типа). Палочки и нити могут:

  • пересекать поле,
  • замирать,
  • складываться вдвое,
  • образовывать спираль.

Имея под рукой микроскоп для наблюдения за различными бактериями, можно исследовать свою бытовую сферу и физиологические жидкости - микроорганизмы в моче, слюне. Интересное рядом, но увидеть скрытую от посторонних глаз жизнь непросто. С одной стороны, доступны различные категории видео и фото, но гораздо эффективнее провести эксперимент самостоятельно.

Биологический музей открывает лабораторию для учеников младших классов, которые еще не изучают химию и не работали с микроскопами в школе. Научные сотрудники Биомузея решили: не нужно долго ждать и подготовили увлекательные занятия для юных исследователей от 6 до 12 лет. Дети смогут сами приготовить растворы, поставить химические опыты, научатся работать с микроскопами, а, главное, сделают выводы из увиденного.

Серия «Опыты и микроскопы. Для тех, кто не хочет ждать» включает 4 занятия: два с микроскопами и два с опытами. Занятия проходят в феврале, по субботам, с 13.00 и 14.00. Продолжительность занятия: 45 минут. Каждое занятие посвящено отдельной теме. Можно посетить все четыре или выборочно.

Расписание:

4 февраля — «Зимний лес под микроскопом»

Чем может удивить замерзший зимний лес? Кто спрятался под снегом и подо льдом? Чтобы рассмотреть студеное очарование при роды каждый участник занятия получит микроскоп и препараты: находки, принесённые из февральского леса: листья, плоды и побеги растений, которые можно встретить именно зимой.

11 февраля — «Химические хамелеоны»

Что может быть лучше опытов? Только опыты с индикаторами! Индикаторы – такие химические вещества, которые, как хамелеоны, меняют цвет при взаимодействии с кислотой или щелочью. На занятии можно поэкспериментировать с различными индикаторами, а потом сделать собственную индикаторную полоску, чтобы можно было продолжить опыты уже дома.

18 февраля — «Зоопарк в капле воды»

Как всего в одной капле могут уместиться десятки животных? Самые маленькие обитатели животного мира: инфузории туфельки, коловратки, черви. На занятии с микроскопами можно узнать, как правильно называются микроскопические одноклеточные и посмотреть, чем они занимаются, когда их никто не видит.

25 февраля — «Игра в прятки»

Как обнаружить витамин С в соке и определить, где его больше? Получится ли удалить пятна йода с помощью аскорбиновой кислоты? Как научиться находить крахмал в продуктах? Прятать и находить химические вещества несложно, когда знаешь, что и где искать.

У нас дома есть микроскоп, но, хотя я и биолог, знакома с ним не понаслышке, много времени провела, разглядывая всевозможные препараты, дети еще ни разу с ним близко не общались. Кажется, что ничего сложного в этом нет, особых инструментов не нужно, а вот, поди ж ты, до сих пор не сподобилась познакомить своих детей с клеткой – основой всего живого. Ну ничего, сегодня я этот пробел в образовании своих старших чад заполнила, его результаты ниже.

Итак, нам понадобились:

  • микроскоп - у меня неплохой, хотя и довольно потрепанный микроскоп с тремя объективами: восьмикратным, сорокакратным и девяностократным; последний из них не понадобится – смотреть бактерии мы не будем, да и иммерсионного масла у меня нет; воспользуемся двумя оставшимися;
  • предметное и покровное стекла – у меня по одному того и другого, этого вполне достаточно;
  • чистая вода – совсем немного нужно;
  • йод – им я буду окрашивать препарат, так как специальных красителей у меня нет, но можно обойтись и вовсе без красителей;
  • головка лука – можно взять совсем небольшую или даже подпорченную, требуется крохотный кусочек пленки;
  • скальпель – можно заменить ножиком для резки бумаги, на худой конеч сгодится и кухонный;
  • пинцет – им удобно снимать с лука пленочку, но можно просто подцепить ее пальчиками;
  • иглы – одна побольше (ей я добавляла воду к препарату), вторая поменьше (этой можно манипулировать под микроскопом);
  • ребенок – ему все будем показывать, я взяла двоих.

Вырезаем кусочек сочной луковой чешуи и пинцетом отслаиваем от нее небольшую пленочку.

Пленочку помещаем на центр промытого и тщательно вытертого предметного стекла.

Теперь пинцетом обрезаем пленку так, чтобы остался совсем небольшой кусочек, большая необрезанная пленка образует складки, рассматривать ее будет неудобно.

Теперь капаем на пленочку воду (капель 7) и накрываем покровным стеклом.

Окрашиваем. Каплю йода помещаем на стык покровного и предметного стекла.

Йод постепенно проникнет под стекло и окрасит препарат. В зависимости от ситуации можно добавить воды или йода. Получится примерно так.

Временный препарат готов. Помещаем его на предметный столик. Настраиваем освещение (я вращаю зеркальце у основания микроскопа, чтобы луч отраженного от настольной лампы света попал на препарат). Потом, глядя в окуляр и вращая основной винт (у меня он самый большой), добиваемся того, чтобы изображение было в наилучшем фокусе, то есть максимально резким. Теперь передвигаем препарат, глядя в окуляр, выбирая самую лучшую картинку.

Все готово, устраиваем перед микроскопом ребенка так, чтобы он сидя мог смотреть в окуляр.

Станислав Яблоков, Ярославский государственный университет им. П. Г. Демидова

Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.

Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро.

Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко.

Картофель. Синие пятна - зёрна крахмала. Увеличение 100×. Окраска йодом.

Плёнка на спине таракана. Увеличение 400×.

Кожура сливы. Увеличение 1000×.

Крыло жучка бибиониды. Увеличение 400×.

Крыло бабочки боярышницы. Увеличение 100×.

Чешуйки с крыльев моли. Увеличение 400×.

Хлоропласты в клетках травы. Увеличение 1000×.

Детёныш улитки. Увеличение 40×.

Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент.

Лист земляники. Увеличение 40×.

Хлоропласты в клетках водоросли. Увеличение 1000×.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева - моноцит, справа - лимфоцит.

Что купить

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего - микроскопа. Одна из основных его характеристик - набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10-20 до 900-1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Следующий немаловажный момент - тип окуляра. «Сколькими глазами» вы хотите рассматривать изображение? Обычно выделяют монокулярную, бинокулярную и тринокулярную его разновидности. В случае монокуляра придётся щуриться, утомляя глаз при длительном наблюдении. В бинокуляр смотрят обоими глазами (не следует путать его со стереомикроскопом, дающим объёмное изображение). Для фото- и видеосъёмки микрообъектов понадобится «третий глаз» - насадка для установки аппаратуры. Многие производители выпускают специальные камеры для своих моделей микроскопов, но можно использовать и обычный фотоаппарат, купив к нему переходник.

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве - конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых - методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т.п.

Оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения - аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы для профессиональных исследований. Сильные объективы (с увеличением, например, 100×) имеют числовую апертуру больше 1 при использовании иммерсии, масла с высоким показателем преломления, раствора глицерина (для УФ-области) или просто воды. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионной жидкости. Её показатель преломления обязательно должен соответствовать конкретному объективу.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция - это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Как смотреть

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани - несколько слоёв клеток создают нечёткое сумбурное изображение.

Исследуемый препарат помещают на предметное стекло и в случае необходимости закрывают покровным. Купить стёкла можно в магазине медицинской техники. Если препарат плохо прилегает к стеклу, его фиксируют, слегка смачивая водой, иммерсионным маслом или глицерином. Не всякий препарат сразу открывает свою структуру, иногда ему нужно «помочь», подкрасив его форменные элементы: ядра, цитоплазму, органеллы. Неплохими красителями служат йод и «зелёнка». Йод достаточно универсальный краситель, им можно окрашивать широкий спектр биологических препаратов.

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т.п.

Что смотреть

Микроскоп приобретён, инструменты закуплены - пора начинать. И начать следует с самого доступного - например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10-15 минут, после чего промыть под струёй воды.

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5-10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

На балконах часто скапливается большое количество трупиков летающих насекомых. Не торопитесь от них избавляться: они могут послужить ценным материалом для исследования. Как видно из фотографий, вы обнаружите, что на крыльях насекомых есть волоски, которые защищают их от намокания. Большое поверхностное натяжение воды не позволяет капле «провалиться» сквозь волоски и коснуться крыла.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На снимках отчётливо видно, что это не пыль, а чешуйки с крыльев. Они имеют разную форму и довольно легко отрываются.

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Не менее интересный объект для наблюдения - кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени - это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей - мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

Сам себе исследователь

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов - азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Продолжая тему исследования крови, следует упомянуть камеру Горяева - устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

«Наука и жизнь» о микросъёмке:

Микроскоп «Аналит» - 1987, № 1.

Ошанин С. Л. С микроскопом у пруда. - 1988, № 8.

Ошанин С. Л. Невидимая миру жизнь. - 1989, № 6.

Милославский В. Ю. . - 1998, № 1.

Мологина Н. . - 2007, № 4.

Словарик к статье

Апертура - действующее отверстие оптической системы, определяемое размерами зеркал, линз, диафрагм и других деталей. Угол α между крайними лучами конического светового пучка называется угловой апертурой. Числовая апертура А = n sin(α/2), где n - показатель преломления среды, в которой находится объект наблюдения. Разрешающая способность прибора пропорциональна А, освещённость изображения А 2 . Чтобы увеличить апертуру, применяют иммерсию.

Иммерсия - прозрачная жидкость с показателем преломления n > 1. В неё погружают препарат и объектив микроскопа, увеличивая его апертуру и тем самым повышая разрешающую способность.

Планахроматический объектив - объектив с исправленной хроматической аберрацией, который создаёт плоское изображение по всему полю. Обычные ахроматы и апохроматы (аберрации исправлены для двух и для трёх цветов соответственно) дают криволинейное поле, которое исправить невозможно.

Фазовый контраст - метод микроскопических исследований, основанный на изменении фазы световой волны, прошедшей сквозь прозрачный препарат. Фаза колебания не видна простым глазом, поэтому специальная оптика - конденсор и объектив - превращает разность фаз в негативное или позитивное изображение.

Моноциты - одна из форм белых клеток крови.

Хлоропласты - зелёные органеллы растительных клеток, отвечающие за фотосинтез.

Эозинофилы - клетки крови, играющие защитную роль при аллергических реакциях.

Понравилась статья? Поделитесь ей