Контакты

Температурой кюри называют. Магнитные материалы и точка кюри. D.2.1 Присваивание маски линии "точка-точка"

Фазовые переходы второго рода

ФАЗОВЫЕ ПЕРЕХОДЫ (фазовые превращения), переходы вещества из одной фазы в другую, происходящие при изменении температуры, давления или под действием каких-либо других внешних факторов,например, магнитных или электрических полей.

Фазовые переходы второго рода -- фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.

Фазовые переходы второго рода сопровождаются изменением симметрии вещества. Изменение симметрии может быть связано со смещением атомов определённого типа в кристаллической решётке, либо с изменением упорядоченности вещества.

В большинстве случаев, фаза, обладающая большей симметрией (т. е. включающей в себя все симметрии другой фазы), соответствует более высоким температурам, но существуют и исключения. Например, при переходе через нижнюю точку Кюри в сегнетовой соли, фаза, соответствующая меньшей температуре, обладает ромбической симметрией, в то время как фаза, соответствующая большей температуре, обладает моноклинной симметрией.

Для количественной характеристики симметрии при фазовом переходе второго рода вводится параметр порядка, принимающий отличные от нуля значения в фазе с большей симметрией, и тождественно равный нулю в неупорядоченной фазе.

Температура Кюри

температура кюри магнитный поле

Температура Кюри, -- температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества (например, магнитной -- в ферромагнетиках, электрической -- всегнетоэлектриках, кристаллохимической -- в упорядоченных сплавах). Названа по имени П. Кюри. При температуре ниже точки Кюри ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью и определённой магнитно-кристаллической симметрией. В точке Кюри () интенсивность теплового движения атомов ферромагнетика оказывается достаточной для разрушения его самопроизвольной намагниченности («магнитного порядка») и изменения симметрии, в результате ферромагнетик становится парамагнетиком. Аналогично у антиферромагнетиков при (в так называемой антиферромагнитной точке Кюри или точке Нееля) происходит разрушение характерной для них магнитной структуры (магнитных подрешёток), и антиферромагнетики становятся парамагнетиками. Всегнетоэлектриках и антисегнетоэлектриках при тепловое движение атомов сводит к нулю самопроизвольную упорядоченную ориентацию электрических диполей элементарных ячеек кристаллической решётки. В упорядоченных сплавах в точке Кюри (её называют в случае сплавов также точкой Курнакова) степень дальнего порядка в расположении атомов (ионов) компонентов сплава становится равной нулю.

Таким образом, во всех случаях фазовых переходов II рода (типа точки Кюри) при в веществе происходит исчезновение того или иного вида атомного «порядка» (упорядоченной ориентации магнитных или электрических моментов, дальнего порядка в распределении атомов по узлам кристаллической решётки в сплавах и т. п.). Вблизи точки Кюри в веществе происходят специфические изменения многих физических свойств (например, теплоёмкости, магнитной восприимчивости и др.), достигающие максимума при, что обычно и используется для точного определения температуры фазового перехода.

Численные значения температуры Кюри приводятся в специальных справочниках.

Температуру Кюри можно определить по температурной зависимости намагниченности, применяя экстраполяцию крутой части зависимости к оси температур.

Поскольку измерение намагниченности образца на магнитометре происходит в довольно сильном внешнем магнитном поле, то в районе точки Кюри происходит размазывание перехода ферромагнетик-парамагнетик благодаря увеличению роста парапроцесса с ростом температуры.

Методы определения температуры Кюри

Ниже перечислены относительно простые и хорошо известные

1)по максимуму температурного коэффициента электрического сопротивления

2) по максимуму отрицательного гальваномагнитного эффекта (обусловленного пропорцеональноастью)R)

3) по исчезновению спонтанной намагниченности M(T), или по минимуму зависимости производной dM/dT

4) по обращению в нуль начальной проницаемости

5)из изотермических измерений теплоемкости Cmagn(T) в нулевом и ненулевом магнитном полях. В точке Кюри наблюдается максимум производной теплоемкости

В данной работе представлен метод определения точки Кюри, использующий эффект возрастания восприимчивости в слабых магнитных полях с ростом температуры. Поведение восприимчивости ч в районе точки Кюри описывается, согласно существующим теориям, в виде:

ч ~ г (T - TC)-1 (1)

где г может изменяться в пределах от 1,26 до 1,4, Из (1) следует, что при Т > ТС величина ч> 0. Максимум зависимости ч = ч(T) резко выражен только для чистых ферромагнитных веществ. В материалах неоднородных, содержащих структурные несовершенства, примеси, кривая ч = ч(T) имеет в районе ТС размытую форму. Для ферримагнетиков, вследствие взаимного влияния неэквивалентных магнитных подрешеток, максимум ч выражен менее отчетливо по сравнению с ферромагнетиками. В этом случае за точку Кюри целесообразно принимать температуру, соответствующую точке пересечения прямых, которые аппроксимируют восходящий и нисходящий участок на зависимости в районе ТС.

В методе Белова-Горяги используется разложение Ландау термодинамического потенциала Ц в ряд по степеням намагниченности с соответствующим коэффициентом при каждой степени.

В состояние термодинамического равновесия

Используются приведённые значения

Где M0 намагниченность насыщения, TC температура Кюри соотношение (2) преобразуется к виду

Коэффициенты в правой части соотношения (3) являются функциями приведенной температуры и раскладываются в ряд Тейлора в окрестности температуры Кюри, то есть при ф=1.

Коэффициент a может быть определен из изотермических полевых зависимостей намагниченности, и, так как при T ? TC a=0, данное свойство может быть использовано для определения температуры Кюри.

  • 5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
  • 3.1.2. Токи смещения, абсорбции и сквозной проводимости
  • 6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
  • 7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
  • 4.2. Эквивалентные схемы замещения диэлектрика с потерями
  • 8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
  • 1) Потери на электропровод­ность;
  • 2) Релаксационные потери;
  • 3) Ионизационные потери;
  • 9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
  • 13. Сегнетоэлектрики. Температура Кюри.
  • 14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
  • 15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
  • Глава 4. Униполярные транзисторы
  • 16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
  • 17. Основы керамической технологии материалов электронной техники.
  • 18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
  • 19. Электрический и тепловой пробой.
  • 5.4.1. Электрический пробой
  • 5.4.2. Электротепловой пробой
  • 20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
  • 21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
  • 22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
  • 24. Эффект Холла и Пельтье. Эффект Холла.
  • 25. Медь и ее сплавы. Алюминий и его сплавы.
  • 26. Магнитомягкие и магнитотвердые материалы. Области их применения
  • 15.1.1. Низкочастотные магнитомягкие материалы
  • 27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
  • 14.2.4. Причины, приводящие к образованию доменов
  • 14.2.5. Механизм технического намагничивания и магнитный гистерезис
  • 28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
  • 29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
  • 30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
  • 31. Требования, предъявляемые к свойствам магнитомягких материа­лов. Магнитные материалы на основе железа.
  • 32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
  • Феррит-гранаты
  • 33. Магнитные свойства и классификация магнитных материалов.
  • Ферромагнетики
  • 14.1.4. Антиферромагнетики
  • 14.1.5. Ферримагнетики
  • 34. Природа ферромагнетизма. Обменное взаимо­действие. Магнитная анизотропия.
  • 14.2.2. Магнитная анизотропия
  • 35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
  • 36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
  • 37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
  • § 6.1. Стационарный эффект Джозефсона
  • 38. Классификация диэлектрических материалов.
  • 7.11. Керамические диэлектрики
  • Конденсаторная керамика
  • 39. Коррозионная устойчивость ме­таллов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
  • 13. Сегнетоэлектрики. Температура Кюри.

    Активными (управляемыми) диэлектриками называют материалы, свойствами которых можно управлять в широких пределах с помо­ щью внешнего энергетического воздействия: напряженности элек­трического или магнитного поля, механического напряжения, тем­пературы, светового потока и др. В этом их принципиальное отличие от обычных (пассивных) диэлектриков.

    Из активных диэлектриков изготавливают активные элементы электронных приборов. Особенностью свойств этих материалов яв­ляются такие явления, как сегнетоэлектричество, электретный, пье­зоэлектрический и электрооптический эффекты, инжекционные токи и др., послужившие основой для разработки диэлектрических приборов. Ниже рассматриваются особенности строения и свойств некоторых активных диэлектриков, нашедших наиболее широкое применение.

    7.15.1. Сегнетоэлектрики

    Сегнетоэлектрики в отличие от обычных (пассивных) диэлектри­ков обладают регулируемыми электрическими характеристиками. Так, например, диэлектрическую проницаемость сегнетоэлектриков с помощью электрического напряжения можно изменять в широких пределах . Характерная особенность сегнетоэлектриков заключется в том, что у них наряду с электронной, ионной и релаксационными видами поляризации, вызываемыми внешним электрическим полем наблюдается самопроизвольная (спонтанная) поляризация , под дей­ствием которой эти диэлектрики приобретают доменную структуру и характерные сегнетоэлектрические свойства.

    Самопроизвольная поляризация проявляется в отсутствие элек­ трического поля в определенном интервале температур ниже точки Кюри Тк вследствие изменения строения элементарной ячейки кри­ сталлической решетки и образования доменной структуры, что, в свою очередь, вызывает у сегнетоэлектриков:

      необычно высокую диэлектрическую проницаемость (до де­сятков тысяч);

      нелинейную зависимость поляризованности, а следовательно,и диэлектрической проницаемости от напряженности приложенного электрического поля;

      резко выраженную зависимость диэлектрической проницаемости от температуры;

      наличие диэлектрического гистерезиса.

    Указанные выше свойства были детально изучены И.В.Курчатовым и П.П.Кобеко у сегнетовой соли (натриево-калиевая соль винной кислоты NaKC4H4O6 4Н2О), поэтому вещества, обладающие аналогичными свойствами, называют сегнетоэлектриками. Важней­ший для практического применения сегнетоэлектрик - титанат бария - открыл в 1944 г. Б.М. Бул. Ряд сегнетоэлектриков был открыт Г.А. Смоленским и др.

    В настоящее время известно около 500 материалов, обладающих сегнетоэлектрическими свойствами. В зависимости от структуры элементарной ячейки и механизма спонтанной поляризации различают сегнетоэлектрики ионные и дипольные, иначе - сегнетоэлектрики типа смещения и упорядочивающиеся, соответственно.

    Ионные сегнетоэлектрики имеют структуру элементарной ячей­ки типа перовскита (минерал СаТiO 3). К ним относятся:

    титанат бария ВаТiO 3 (Тк= 120°С),

    титанат свинца РbТiO 3 (Тк = 493°С),

    ти­танат кадмия CdTiО 3 (Тк = 223°С),

    метаниобат свинца PbNb 2 O 6 (Tk = 575°С),

    ниобат калия KNbO 3 (Tk = 435°С),

    иодат калия KNbO 3 (Тк = 210°С) и др.

    Все химические соединения этой группы нерастворимы в воде, обладают значительной механической прочностью, из­делия из них получают по керамической технологии. Они представ­ляют собой в основном кристаллы с преимущественно ионной связью. Для этой группы сегнетоэлектриков спонтанная поляриза­ция схематически показана на рис. 7.1 на примере элементарной ячейки ВаТiO 3 . Элементарная ячейка титаната бария при высоких температурах имеет форму куба (а = 4,01 10 -10 м); в узлах куба распо­ложены ионы бария, в середине граней - ионы кислорода, образуя кислородный октаэдр, в центре которого размещен ион титана (см. рис. 7.1, а, а"). В результате интенсивного теплового движения ион титана равновероятно находится вблизи каждого иона кисло­рода, поэтому электрический момент ячейки ввиду ее симметрич­ности равен нулю и диэлектрик находится в параэлектрическом состоянии (термин аналогичен термину «парамагнетик»). При тем­пературах равной и ниже некоторой, называемой точкой Кюри (Тк), ион титана , благодаря ослаблению энергии теплового движения, оказывается преимущественно вблизи одного из ионов кислорода, смещаясь на 1 10 -11 м . В этом же направлении смещаются и ионы ба­рия (на 5 10 -12 м).

    Ион кислорода, находящийся напротив О 2- , к которому сместил­ся Ti 4+ , сдвигается в противоположном направлении (на 4 10 -12 м). В результате этих смещений ионов кубическая решетка незначитель­ но деформируется в тетрагональную (с параметрами элементарной ячейки а = 3,99 A ,с = 4,036 A), а кислородный октаэдр не­ сколько искажается (см. рис. 7.1, б, б"). Хотя все эти смещения ио­ нов , в том числе и иона титана, сравнительно малы, тем не менее они очень важны и приводят к образованию значительного электрического дипольного момента Po –

    Рис. 7.1. Элементарная ячейка (а, а") титаната бария и ее проекция (б б") при температурах выше (а, а") и ниже точки Кюри (б, б")

    Возникает спонтанная поляризация и происходит фазовый переход диэлектрика из параэлектрического со­ стояния в сегнетоэлектрическое .

    Таким образом, самопроизвольная поляризация ионных сегнетоэлектриков возникает в отсутствие электрического поля в опреде­ ленном интервале температур в результате смещения иона Ti 4+ в объ­ еме элементарной ячейки из центрального положения и деформации последней.

    Дипольными сегнетоэлектриками являются

    сегнетова соль NaKC4H4O6 4Н2О (Тк = 24°С),

    триглицинсульфат (NH2CH2COOH)3 H2SO4 (Tk = 49°С),

    гуaнидиналюминийсульфатгексагидрат C(NH3)2A1(SO4)2 6Н2О (Тк > 200°С),

    нитрит натрия NaNO2 (Тк = 163°С),

    дигидрофосфат калия КН2Р04(Тк = -151 С) и др.

    Химические соединения этой группы обладают низкой механической прочностью и растворимы в воде , благодаря чему из водных растворов этих соединений можно выращивать крупные монокристаллы . Атомы в этих соединениях несут на себе заряд, но связаны между собой преимущественно кова- лентной связью.

    Дипольные сегнетоэлектрики в элементарной ячейке содержат атом (ион) или группу атомов (ионов), имеющих два положения рав­новесия, в каждом из которых образуется электрический дипольный момент Р о. При температурах выше точки Кюри в результате хаоти­ческого теплового движения эти два положения равновесия равнове­роятны, поэтому спонтанная поляризация отсутствует, и диэлектрик

    При Т<Тк одно из положений становится предпочтительным и в элементарной ячейке возникает дипольный момент; происходит спонтанная поляризация, и диэлек­трик переходит из параэлектрического состояния в

    сегнетоэлектри ческое (осуществляется фазовый переход).

    Классически, все существующие материалы по своим магнитным свойствам делятся на несколько групп, связанных со структурным строением материала...

    Классически, все существующие материалы по своим магнитным свойствам делятся на несколько групп, связанных со структурным строением материала, среди которых, в силу тематики настоящей статьи, следует выделить следующие:

    Диамагнетики

    Парамагнетики

    Ферромагнетики

    Эта классификация отражает поведение материала при воздействии на него внешним магнитным полем.

    Диамагнетиками называют материалы, магнитная восприимчивость которых отрицательна, т.е. при попадании в магнитное поле, вектор намагниченности каждого атома диамагнетика направлен встречно вектору напряженности внешнего магнитного поля. Таким образом, в отсутствии магнитного поля такие материалы немагнитны, а при попадании во внешнее магнитное поле, диамагнетики ослабляют его. Магнитная проницаемость таких материалов меньше единицы.

    Парамагнетиками называют слабомагнитные материалы, магнитная восприимчивость которых положительна, т.е. при попадании в магнитное поле, вектор намагниченности атомов парамагнетика сонаправлен с вектором напряженности внешнего магнитного поля. Однако ввиду слабовыраженных магнитных свойств, магнитная проницаемость таких материалов приблизительно равна единице. Таким образом, несмотря на сонаправленность вектора намагниченности, парамагнетики практически не оказывают влияния на внешнее магнитное поле, а в его отсутствии - немагнитны.

    Ферромагнетиками называют материалы с выраженными магнитными свойствами, отличающиеся наличием доменной структуры, при которой каждый из доменов может имеет некоторую спонтанную намагниченность. Доменами называют объемные области материала, в которых направления спиновых магнитных моментов электронов атомов совпадают.

    Такая структура позволяет ферромагнетикам сохранять намагниченность в отсутствии внешнего магнитного поля, а высокие значения магнитной проницаемости позволяют ферромагнетикам усиливать внешнее магнитное поле в десятки, сотни и даже тысячи раз. Такие материалы широко применяются при изготовлении постоянных магнитов, магнитопроводов трансформаторов, концентраторов магнитного потока и т.п.

    Классическими представителями ферромагнетиков являются железо, кобальт, никель, а также сплавы на их основе и их оксиды.

    Для ферромагнетиков характерно наличие гистерезиса , а также фазового перехода второго рода, связанного с изменением структуры кристаллической решетки материала. При этом переходе тепловой энергии движения узлов кристаллической решетки становится достаточно для дезориентации магнитных спиновых моментов электронов атомов, что приводит к утрате материалом ферромагнитных свойств.


    Таким образом ферромагнетик становится парамагнетиком. Температура, при которой происходит данное магнитное превращение материала называется температурой Кюри или точкой Кюри. Значение этой температуры для материала варьируется в зависимости от типа и количества примесей. Для чистого железа эта температура составляет 1043 K (770 O C ).

    На графике представлена зависимость магнитной проницаемости ферромагнетика от температуры. Несмотря на высокую крутизну характеристики в окрестности точки Кюри, магнитный материал не переходит точку Кюри скачкообразно: переход происходит постепенно, начиная с поверхности. При этом материал заготовки становится как бы двухслойным: слой парамагнетика поверх слоя ферромагнетика с достаточно резкой границей раздела сред. Это объясняется неравномерностью нагрева заготовки в поперечном сечении и сильно зависит от интенсивности проявления поверхностного эффекта .

    Для индукционного нагрева этот переход имеет огромное значение, поскольку мощность нагрева заготовки непосредственно связана с магнитной проницаемостью материала согласно уравнению


    Снижение магнитной проницаемости при нагреве материала выше точки Кюри приводит к следующим эффектам:

    Снижается мощность нагрева

    Увеличивается толщина скин-слоя

    Повышается резонансная частота системы

    Снижается КПД системы

    Очевидно, что эти эффекты не способствуют повышению интенсивности индукционного нагрева, поэтому являются нежелательными. Борьба с ними - одна из основных задач при проектировании ТВЧ оборудования .

    Тем не менее, практическое большинство процессов термообработки металлов на основе железа связаны с обработкой его γ-модификации, так же называемой аустенитом, устойчивой в температурном интервале 917 - 1394 O C , т.е. при температуре значительно выше точки Кюри.

    Ферромагнитные свойства вещества проявляются лишь при температурах ниже точки Кюри.

    Подавляющее большинство атомов обладает собственным магнитным полем. Практически любой атом можно представить в виде крошечного магнитика с северным и южным полюсами. Этот магнитный эффект объясняется тем, что электроны при движении по орбитам вокруг атомного ядра создают микроскопические электрические токи, которые и порождают магнитные поля (см. Открытие Эрстеда). Сложив магнитные поля, индуцируемые всеми электронами атома, мы получим суммарное магнитное поле атома.

    В большинстве веществ магнитные поля атомов ориентированы хаотично, в результате чего они взаимно гасятся. Однако в некоторых веществах и материалах (прежде всего в сплавах, содержащих железо, никель или кобальт) атомы упорядочиваются так, что их магнитные поля направлены в одну сторону и усиливают друг друга. В результате кусочек такого вещества оказывается окружен магнитным полем. Из таких веществ, называемых ферромагнетиками , поскольку обычно они содержат железо, и получают постоянные магниты .

    Чтобы понять, как образуются ферромагнетики, представим себе кусок раскаленного железа. Из-за высокой температуры атомы в нем движутся очень быстро и хаотично, не оставляя возможности для упорядочения атомных магнитных полей в одном направлении. Однако по мере понижения температуры тепловое движение ослабевает и начинают преобладать другие эффекты. В железе (и некоторых других металлах) на атомном уровне действует сила, стремящаяся объединить магнитные диполи соседних атомов друг с другом.

    Эта сила межатомного взаимодействия, получившая название обменной силы , была впервые описана Вернером Гейзенбергом (см. Принцип неопределенности Гейзенберга). Она обусловлена тем, что два соседних атома могут обмениваться внешними электронами, и эти электроны начинают принадлежать одновременно обоим атомам. Обменная сила прочно связывает атомы в кристаллической решетке металла и делает их магнитные поля параллельными и направленными в одну сторону. В результате упорядоченные магнитные поля соседних атомов взаимно усиливаются, а не гасятся. И такой эффект может наблюдаться в объеме вещества порядка 1 мм 3 , в котором содержится до 10 16 атомов. Атомы такого магнитного домена (см. ниже) выстроены таким образом, что мы имеем чистое магнитное поле.

    При высоких температурах действию этой силы мешает тепловое движение атомов, при низких же температурах атомные магнитные поля могут усиливать друг друга. Температура, при которой происходит этот переход, называется точкой Кюри металла — в честь открывшего ее французского физика Пьера Кюри.

    В реальности структура ферромагнетиков гораздо сложнее, чем описано выше. Обычно отдельные домены включают всего несколько тысяч атомов, магнитные поля которых однонаправлены, однако поля различных доменов направлены беспорядочно и по совокупности материал не намагничен. Поэтому обычный кусок железа магнитных свойств не проявляет. Однако при определенных условиях упорядочиваются и магнитные поля доменов, из которых состоит ферромагнетик (например, при остывании раскаленного железа в сильном магнитном поле). И тогда мы получаем постоянный магнит. Наличие точки Кюри объясняет также, почему при сильном нагревании постоянного магнита в какой-то момент происходит его полное размагничивание.

    Marie Sklodowska Curie, 1867-1934

    Польский, затем французский химик. Родилась в Варшаве в интеллигентской семье в тяжелый период российской оккупации, выпавшей на долю Польши. Учась в школе, помогала матери содержать пансион, прислуживая в нем в качестве горничной. После окончания школы какое-то время работала гувернанткой в состоятельных семьях, чтобы заработать средства на получение медицинского образования для своей сестры. На этот период приходится расстроенная родителями жениха помолвка Склодовской с юношей из семьи, где она прислуживала (родители сочли такой брак их сына недостойным их социального положения и упустили блестящую возможность улучшить свой фамильный генофонд). После получения ее сестрой медицинского образования в Париже туда же оправилась учиться и сама Склодовская.

    Блестящие результаты вступительных экзаменов по физике и математике привлекли к молодой полячке пристальное внимание ведущих французских ученых. Результатом стала ее помолвка в 1894 году с Пьером Кюри и брак с ним, заключенный в следующем году. В те годы исследования явления радиоактивности только начинались, и работы в этой области был непочатый край. Пьер и Мария Кюри занялись извлечением радиоактивных образцов из руд, добываемых в Богемии, и их исследованием. В результате супругам удалось открыть сразу несколько новых радиоактивных элементов (см. Радиоактивный распад), один из которых был назван кюрием в их честь, а еще один — полонием в честь родины Марии. За эти исследования супруги Кюри были совместно с Анри Беккерелем (Henri Becquerel, 1852-1908), открывшим рентгеновские лучи, удостоены Нобелевской премии по физике за 1903 год. Именно Мария Кюри первой ввела в употребление термин «радиоактивность» — по названию первого открытого Кюри радиоактивного элемента радия.

    После трагической гибели Пьера в 1906 году Мария Кюри отказалась от предложенной Сорбонским университетом пенсии и продолжила исследования. Ей удалось доказать, что в результате радиоактивного распада происходит трансмутация химических элементов, и, тем самым, положить начало новой отрасли естественных наук — радиохимии. За эту работу Мария Кюри была удостоена Нобелевской премии по химии за 1911 год и стала первым ученым — дважды лауреатом самой престижной премии за достижения в естественных науках. (В том же году Парижская Академия наук отклонила ее кандидатуру и не приняла Марию Кюри в свои ряды. Видимо, двух Нобелевских премий господам академикам показалось недостаточно для преодоления своей склонности к дискриминации по национальному и гендерному признаку.)

    В годы Первой мировой войны Мария Кюри занималась активными прикладными медицинскими исследованиями, работая на фронте с портативной рентгеновской установкой. В 1921 году в Америке была открыта подписка на сбор средств на покупку для Марии Кюри 1 грамма чистого радия, который был ей необходим для дальнейших исследований. В ходе ее триумфальной поездки по Америке с публичными лекциями ключик от шкатулки с драгоценным радиоактивным металлом был вручен Кюри самим Президентом США Уорреном Хардингом (Warren Harding).

    Последние годы жизни Марии Кюри были заполнены важными международными инициативами в области науки и медицины. В начале 1930-х годов здоровье Марии Кюри резко ухудшилось — сказались огромные дозы радиоактивного облучения, полученные ею в процессе многолетних экспериментов, — и в 1934 году она скончалась в санатории во Французских Альпах.

    Pierre Curie, 1859-1906

    Французский физик. Родился в Париже в семье видного врача. Получил домашнее образование. Первоначально изучал фармакологию в Сорбонне, однако очень скоро увлекся естественнонаучными экспериментами с кристаллами, которые проводил его брат Жак, и со временем стал директором Школы физики и химии (École de Physique et Chimie). В 1895 году женился на Марии Склодовской и в том же году защитил докторскую диссертацию по магнитным свойствам парамагнетиков (см. Закон Кюри). Вместе с супругой в тяжелейших рабочих условиях проводил в Школе опыты по изучению свойств радиоактивных веществ. В 1904 году получил назначение на пост профессора физики и директора лаборатории (вскоре преобразованной в Институт радия) Сорбонны. В апреле 1906 года Пьер Кюри погиб в результате нелепого несчастного случая, попав под колеса извозчика. Он даже не успел завершить оборудование своей новой лаборатории.

    Сила магнетизма определяется так называемым "магнитным моментом" - дипольным моментом внутри атома, который исходит из углового момента и спина электронов. Материалы имеют разные структуры собственных магнитных моментов, зависящих от температуры. Точка Кюри - это температура, при которой изменяются собственные магнитные моменты материала.

    Постоянный магнетизм обусловлен выравниванием магнитных моментов, и индуцированный магнетизм создается, когда неупорядоченные магнитные моменты вынуждены выравниваться в приложенном магнитном поле. Например, упорядоченные магнитные моменты (ферромагнитные) меняются и становятся неупорядоченными (парамагнитными) при температуре Кюри. Более высокие температуры делают магниты слабее, поскольку спонтанный магнетизм происходит только ниже температуры Кюри - это одна из главный особенностей подобных спонтанных явлений. Магнитная восприимчивость выше температуры Кюри может быть рассчитана по закону Кюри-Вейсса, который получен из закона Кюри.

    Использование и формулы

    По аналогии с ферромагнитными и парамагнитными материалами температуру Кюри можно также использовать для описания между сегнетоэлектричеством и параэлектричеством. В этом контексте параметр порядка представляет собой электрическую поляризацию, которая переходит от конечного значения к нулю, когда температура повышается выше температуры Кюри.

    Магнитные моменты представляют собой постоянные дипольные моменты внутри атома, которые содержат электронный момент по соотношению μl = el / 2me, где me - масса электрона, μl - магнитный момент, l ì - момент количества движения, без которого трудно высчитать температуру Кюри; это отношение называется гиромагнитным.

    Электроны в атоме вносят магнитные моменты из собственного углового момента и из их орбитального момента вокруг ядра. Магнитные моменты от ядра незначительны в отличие от магнитных моментов от электронов. Тепловые вклады приводят к появлению более высоких энергий электронов, нарушающих порядок и разрушение выравнивания между диполями.

    Особенности

    Ферримагнитные и антиферромагнитные материалы имеют разные структуры магнитного момента. При определенной температуре Кюри материала эти свойства меняются. Переход от антиферромагнитного к парамагнитному (или наоборот) происходит при температуре Нееля, которая аналогична температуре Кюри - это, в сущности, главное условие подобного перехода.

    Ферромагнитная, парамагнитная, ферримагнитная и антиферромагнитная структуры состоят из собственных магнитных моментов. Если все электроны внутри структуры спарены, эти моменты компенсируются из-за их противоположных спинов и угловых моментов. Таким образом, даже при приложении магнитного поля эти материалы имеют разные свойства и не имеют температуры Кюри - для железа, например, используется совсем другая температура.

    Материал парамагнитен только выше его температуры Кюри. Парамагнитные материалы немагнитны, когда магнитное поле отсутствует и магнитно при приложении магнитного поля. Когда магнитное поле отсутствует, материал имеет неупорядоченные магнитные моменты; то есть атомы асимметричны и не выровнены. Когда присутствует магнитное поле, магнитные моменты временно перестраиваются параллельно приложенному полю, атомы симметричны и выровнены. Магнитные моменты, выровненные в одном направлении, являются причиной индуцированного магнитного поля.

    Для парамагнетизма эта реакция на приложенное магнитное поле положительна и известна как магнитная восприимчивость. Магнитная восприимчивость применяется только выше температуры Кюри для неупорядоченных состояний.

    За пределами точки Кюри

    Выше температуры Кюри возбуждаются атомы, и ориентации спинов становятся рандомизированными, но могут быть перестроены приложенным полем, т.е. материал становится парамагнитным. Все, что ниже температуры Кюри, - это пространство, внутренняя структура которого уже претерпела фазовый переход, атомы упорядочены и сам материал стал ферромагнитным. Магнитные поля, индуцированные парамагнитными материалами, очень слабы по сравнению с магнитными полями ферромагнитных материалов.

    Материалы только ферромагнитны ниже их соответствующих температур Кюри. Ферромагнитные материалы являются магнитными в отсутствие приложенного магнитного поля.

    Когда магнитное поле отсутствует, материал имеет спонтанную намагниченность, являющуюся результатом упорядоченных магнитных моментов. Т. е. для ферромагнетизма атомы симметричны и выровнены в одном направлении, создавая постоянное магнитное поле.

    Температура кюри для ферромагнетиков

    Магнитные взаимодействия удерживаются вместе обменными взаимодействиями; иначе тепловой беспорядок преодолел бы магнитных моментов. Обменное взаимодействие имеет нулевую вероятность параллельных электронов, занимающих одну и ту же точку во времени, что подразумевает предпочтительное параллельное выравнивание в материале. Фактор Больцмана вносит значительный вклад, поскольку он предпочитает, чтобы взаимодействующие частицы были выровнены в одном направлении. Это приводит к тому, что ферромагнетики имеют сильные магнитные поля и высокие определения температуры Кюри около 1000 К.

    Ферримагнитные материалы являются магнитными в отсутствие приложенного магнитного поля и состоят из двух разных ионов.

    Спонтанный магнетизм

    Когда магнитное поле отсутствует, материал имеет спонтанный магнетизм, являющийся результатом упорядоченных магнитных моментов; т.е. для ферримагнетизма магнитные моменты одного и того же ионного момента выровнены в одном направлении с определенной величиной, а магнитные моменты другого иона направлены в противоположном направлении с другой величиной. Поскольку магнитные моменты имеют разные величины в противоположных направлениях, существует спонтанный магнетизм и присутствует магнитное поле.

    Что происходит ниже точки Кюри?

    Как утверждает современная сегнетоэлектрика, температура Кюри имеет свои ограничения. Подобно ферромагнитным материалам магнитные взаимодействия удерживаются вместе обменными взаимодействиями. Однако ориентации моментов являются антипараллельными, что приводит к чистым импульсом, вычитая их импульс друг от друга.

    Ниже температуры Кюри атомы каждого иона выровнены параллельно с разными импульсами, вызывающими спонтанный магнетизм; материал является ферримагнитным. Над температурой Кюри материал парамагнитен, поскольку атомы теряют свои упорядоченные магнитные моменты, когда материал подвергается фазовому переходу.

    Температура Нееля и магнетизм

    Материал имеет равные магнитные моменты, выровненные в противоположных направлениях, что приводит к нулю магнитного момента и нулевого магнетизма при всех температурах ниже температуры Нееля. Антиферромагнитные материалы слабо намагничены в отсутствие магнитного поля.

    Подобно ферромагнитным материалам магнитные взаимодействия удерживаются вместе обменными взаимодействиями, предотвращающими тепловой беспорядок от преодоления слабых взаимодействий магнитных моментов. Когда происходит беспорядок, он находится при температуре Нееля.

    Понравилась статья? Поделитесь ей